

MERI College of Engineering and Technology (MERI - CET)

Lesson Plan

Name of the Faculty	:	Mr.NEERAJ KUMAR
Discipline	:	B.TECH
Semester	:	5 th
Subject	:	Principle of Software Engineering
Lesson Plan Duration	:	15 Weeks (from Aug., 2020 to Nov, 2020)
** Work Load (Lecture/P	ractical)	per week (in hours): Lectures-03

Week		Theory				
	Lecture	Торіс				
	Day	(including assignment/test)				
1^{st}	1^{st}	Introduction: The process, software products, emergence of software				
		engineering				
	2^{nd}	evolving role of software, software life cycle models, Software				
		Characteristics, Applications, Software crisis.				
	$3^{\rm rd}$	Software project management: Project management concepts, software				
		process and project metrics Project planning, project				
2^{nd}	1^{st}	project estimation Techniques, empirical estimation techniques,				
		COCOMO- A Heuristic estimation techniques				
	2^{nd}	ASSIGNMENT-1 COCOMO Model				
	3^{rd}	staffing level estimation, team structures, staffing, risk analysis and				
		management, project scheduling and tracking				
3 rd	1^{st}	REVISION				
	2^{nd}	Requirements Analysis and specification requirements engineering,				
		system modeling and simulation Analysis principles modeling				
	$3^{\rm rd}$	partitioning Software, prototyping: , Prototyping methods and tools;				
		Specification principles, Representation, the software requirements				

MERI College of Engineering and Technology (MERI - CET)

4 th	1^{st}	Analysis Modeling: Data Modeling, Functional modeling and information
	2^{nd}	Data flow diagrams, Behavioral Modeling
	3 rd	The mechanics of structured analysis: Creating entity/ relationship diagram, data flow model,
5^{th}	1^{st}	Control flow model, the control and process specification; The data
		dictionary; Other classical analysis methods.
	2 nd	ASSIGNMENT-2
	$3^{\rm rd}$	System Design: Design concepts and principles: the design process: Design and software quality
6^{th}	1^{st}	Design principles; Design concepts: Abstraction, refinement, modularity
	2 nd	software architecture, control hierarchy, structural partitioning, data structure, software procedure, information hiding; Effective modular design
	3 rd	Functional independence, Cohesion, Coupling; Design Heuristics for effective modularity; The design model; Design documentation.
7^{th}	1^{st}	Architectural Design: Software architecture, Data Design: Data modeling, data structures
	2^{nd}	Data structures, databases and the data warehouse, Analyzing alternative Architectural Designs ,architectural complexity
	3 rd	Mapping requirements into a software architecture; Transform flow, Transaction flow; Transform mapping
$8^{\rm th}$	1^{st}	Refining the architectural design.Testing and maintenance: Software Testing Techniques
	2^{nd}	software testing fundamentals: objectives, principles, testability; Test case design, white box testing, basis path testing: Control structure testing: Black box testing, testing for specialized environments
	$3^{\rm rd}$	Architectures and applications. Software Testing Strategies: Verification and validation
9 th	1^{st}	Unit testing, Integration testing; Validation testing, alpha and beta testing . ASSIGNMENT-3
	2^{nd}	System testing: Recovery testing, security testing, stress testing, performance testing
	3 rd	The art of debugging, the debugging process debugging approaches. Software re-engineering
10 th	1^{st}	Reverse engineering ,restructuring, forward engineering.
	2^{nd}	Software Reliability and Quality Assurance :Quality concepts, Software quality assurance , SQA activities

MERI College of Engineering and Technology (MERI - CET)

	3^{rd}	Software reviews: cost impact of software defects
11^{th}	1 st	review guidelines; Formal approaches to SQA; Statistical software quality assurance
	2^{nd}	software reliability: Measures of reliability and availability
	3^{rd}	The ISO 9000 Quality standards: The ISO approach to quality assurance systems
12 th	1^{st}	The ISO 9001 standard, Software Configuration Management
	2^{nd}	Computer Aided software Engineering: CASE,
	3 rd	Building blocks, integrated case environments and architecture, repository
		ASSIGNMENT-4
13 th	1^{st}	Requirements Analysis and specification requirements engineering,
		system modeling and simulation Analysis principles modeling
	2^{nd}	partitioning Software, prototyping: , Prototyping methods and tools; Specification principles, Representation, the software requirements specification
	3 rd	Analysis Modeling: Data Modeling, Functional modeling and information flow: Data flow diagrams, Behavioral Modeling
14^{th}	1^{st}	The mechanics of structured analysis: Creating entity/ relationship
		diagram, data flow model, control flow model, the control and process
		specification; The data dictionary; Other classical analysis methods.
	2^{nd}	System Design: Design concepts and principles: the design process:
		Design and software quality, design principles; Design concepts:
		Abstraction, refinement, modularity
	3^{rd}	Analysis Modeling: Data Modeling, Functional modeling and information
1 5 th	1 St	tlow: Data flow diagrams, Behavioral Modeling
15	1	diagram data flaw model, control flaw model, the control and process
		diagram, data now model, control now model, the control and process
		Specification, The data dictionary, Other classical analysis methods.
	$2^{\rm nd}$	System Design: Design concepts and principles: the design process:
	-	Design and software quality, design principles: Design concepts:
		Abstraction, refinement, modularity
1		